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このノートでは、Strangeな非特異射影曲線の構造に関する Samuelの定理 [Ha,定理 IV.3.9]に、Hartshorne

によるものとは別の証明を与える。

Definition 1. k を代数閉体、C ⊂ Pn を射影的な曲線とする。C のすべての正則な点での接線が同じ点
p ∈ Pn を通るとき、C を (埋め込みのもと、Pn 内で、) Strangeであるという。

Notations.

• スキームの射 f : T → S と S 上の対象 F (S-スキームや、S 上のスキームの射や、S 上の準連接層な
ど) に対し、FT で F の射 T → S による基底変換を表す。

• k を代数閉体とする。
• k-線形空間 V に対し、P(V ) :

def
= Proj(Sym(V ))と書く。OP(V )(1)を P(V )上のトートロジカル直線束

とする。
• Pn と P(H0(Pn,OPn(1)))は自然に同型なので、このノートではこれらを同一視する。
• k 上の代数多様体 X に対し、∆(1) で対角射 X → X ×k X の一次無限小近傍、つまりイデアル層 I2

∆

に対応する X ×k X の閉部分スキームとする。第一、第二射影を pr1, pr2 : X ×k X ⇒ X と書き、
p1, p2 : ∆(1) ⇒ X をそれぞれ pr1, pr2 と閉埋め込み∆(1) → X ×k X の合成とする。代数多様体X 上
の準連接層 F に対し、P1(F) :

def
= p2,∗p

∗
1F と置く。

Remark 2.

• 代数多様体 X 上の準連接層 F に対し、平坦基底変換により pr2,∗pr
∗
1F ∼= H0(X,F)⊗k OX であるか

ら、射の列 H0(X,F)⊗k OX → p2,∗p
∗
1F → F ができる。

• V を有限次元 k-線形空間とする。代数多様体 X から P(V ) への射は、X 上の直線束 L への全射
VX → Lと対応する (cf. [Ha, Theorem II.7.12])。射 VX → Lは k-線形空間の射 V → H0(X,L)と
対応し、これにより VX → P1(L)を引き起こす。X → P(V )が閉埋め込みであれば射 VX → P1(L)

は全射となる (cf. [ゆ])。
• V を有限次元 k-線形空間とする。X ⊂ P(V ) を射影代数多様体とすると、X 上で直線束 L =

OP(V )(1)|X と全射 VX → P1(L) を得る。閉点 x ∈ X を正則点とする。全射 VX → P1(L) を
点 x へ基底変換すると、全射 V → k(x) ⊕ mx/m

2
x を得る。この全射が定める線形部分多様体

P(k(x)⊕mx/m
2
x) ⊂ P(V )は、X の点 x ∈ X での接平面 (embedded tangent plane) である。

Theorem 3 ([Ha, 定理 IV.3.9]). k を代数閉体、C ⊂ Pn を非特異射影曲線とする。このとき C ∼= P1 であ
り、さらに C は Pn 内の直線か、または、ある平面 P2 ⊂ Pn に含まれる次数 2の曲線のいずれかとなる。
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Proof. g を C の種数、d を C の次数とする。g = 0, d ≤ 2 を示せば良い。V :
def
= H0(Pn,OPn(1)) と置き、

Pn = P(V )と書く。L = OP(V )(1)|C と置く。全射の列 VC → P1(L) → Lができ、埋め込み C ⊂ P(V )は全
射 VC → Lにより引き起こされている。
C のすべての接線が通る点を pとし、点 p ∈ P(V )を与える全射も同じ記号 p : V → k で表す。C のすべ
ての接線が点 pを通ることは、

ker(VC → P1(L)) ⊂ ker(VC
pC−−→ kC)

を意味し、従って全射 pC : VC → kC は VC → P1(L) を経由して分解する。こうして全射 P1(L) → kC

を得る。一方で、自然な全射 P1(L) → L もあるが、L ̸∼= kC であることから、二つの射 P1(L) → kC と
P1(L) → Lの核はたがいに他を含まない。従って、これらの射を並べて得られる射 P1(L) → L⊕ kC は単射
となる。detを取れば直線束の単射 det(P1(L)) → det(L⊕ kC) ∼= Lを得る。完全列

0 −−−−→ ΩX ⊗ L −−−−→ P1(L) −−−−→ L −−−−→ 0

より det(P1(L)) ∼= ΩX ⊗ L⊗2 であり deg(det(P1(L))) = 2g − 2 + 2dとなる。従って不等式

deg(det(P1(L))) = 2g − 2 + 2d ≤ deg(L) = d

を得る。これを実現する整数 g ≥ 0, d ≥ 1の組は

(g, d) = (0, 1) , (0, 2)

しかありえない。

Remark 4. ある平面 P2 ⊂ Pn に含まれる次数 2の非特異射影曲線 C が strangeであるとする。点 p ∈ P2

を、C のすべての接線が通る点とする。C は次数 2であるから、pを通る直線は C と必ず接する。よって、点
pから P1 へ射影すると、次数 2の単射 f : C → P1 を得る。このとき f は純非分離であり、次数が 2である
ことから、標数 2でなければならないことがわかる。特に、標数 p ̸= 2の strangeな非特異射影曲線 C ⊂ Pn

は直線しかあり得ない。

曲線が特異点を持つ場合には、標数正であれば、strange な曲線はたくさんあり得る。例は [Ha, 演習
IV.3.8.(a)] に載っている通りである。一方、その次の演習問題 [Ha, 演習 IV.3.8.(b)] にある通り、標数 0で
は strangeな曲線は直線しかあり得ない。

Theorem 5 ([Ha, 演習 IV.3.8.(b)]). k を標数 0 の代数閉体、C ⊂ Pn を (非特異とは限らない) 射影的で
strangeな曲線とする。このとき C は直線である。

Proof. strangeな (非特異とは限らない射影的な) 曲線 C ⊂ Pn は、点からの射影を繰り返すことにより、低
い次元の射影空間内の strangeな曲線と双有理である (cf. [Ha, 演習 I.4.9.])。よって、射 f : C → P2 であっ
て以下を満たすものが存在する：

• f は像への双有理射である。
• f の像は P2 内で strangeである。

よって、P2 内の strangeな (非特異とは限らない射影的な) 曲線 C ⊂ P2 が直線に限ることを示せば良い。
Im(f)のすべての正則点での接線が通る点を p ∈ P2 と置き、C の正規化を σ : C̃ → C と置く。点 pから
の射影 P2 99K P1 と f ◦ σ を合成することで、射 g : C̃ → P1 を得る。もし g が一点に潰れるならば、C はそ
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の点の fiber、つまりある P2 内の直線に含まれるので、C は直線となることがわかる。そうでない場合、g は
C の正則点に対応する C̃ の点 (これは無限個ある) の上で分岐する。標数 0であるので分岐点は有限個でなけ
ればならず、これは矛盾である。以上で示された。
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